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An on-line computer-controlled X-ray or neutron single-crystal diffractometer with background count 
times and scan speeds under the control of the computer not only makes possible the optimum division 
of counting time between background and scan to maximize the precision of the intensity measurement 
but also permits the total amount of counting time available for the structure determination or re- 
determination to be so distributed among the reflections as to obtain maximum precision in any desired 
combination of least-squares refined parameters. The precision of any such combination is maximized 
variationally with respect to the reflection weights (of which the parameters refined by least-squares 
are explicit functions) subject to the constraint that the sum of the counting times, on which the weights 
depend, is fixed. The existence of a stationary maximum depends on the assumption that the measure- 
ments of AF are subject not only to counting errors but to other random errors which effectively set a 
point of diminishing returns so far as further improvement of parameter precision by additional count- 
ing is concerned. Results of this study indicate that unless the amount of time available is far beyond 
the point of diminishing returns, substantial numbers of reflections should not be counted at all, except 
to the bare minimum amount necessary for the determination of the trial structure. For optimizing 
the precision of positional parameters the counting time should be concentrated on the high-angle 
reflections; for thermal parameters low-angle reflections are also required. 

Introduction 

An on-line computer-controlled X-ray or neutron 
single-crystal diffractometer with background count 
times and scan speeds under the control of  the computer 
should offer certain advantages over conventional fixed- 
time or fixed-count procedures in enabling variances of 
the measured intensities and structure factors to be 
approximately specified and even optimized. As is al- 
ready known (Parrish, 1956; Mack & Spielberg, 1958) 
the time available for a given reflection can be divided 
between background and scan so as to minimize the 
variance of the intensity, and the times allotted to 
counting or counts allotted to timing the various re- 
flections can be specified so as to give within reason 
any desired precision mode in the measured quantities: 
constant absolute precision in intensity, constant abso- 
lute precision in the structure factor, constant relative 

* On leave, February through July 1967. 

precision, or other (for references, see Parrish, 1962). 
However, it should also be possible to divide the 

total amount of instrument (counting) time available 
for the entire determination among the various reflec- 
tions so as best to accomplish the particular objectives 
of the structure determination or redetermination 
(apart from the elucidation of a correctly refinable trial 
structure): minimization of the variances of the posi- 
tions of all atoms or of some group of atoms or of 
specified functions of the positional parameters, per- 
haps even the precise determination of a single inter- 
atomic distance, even conceivably (but not likely) 
maximization of the precision of certain specified ther- 
mal parameters. This amounts to the specification of 
the optimum weights for the various reflections, upon 
which the required counting times depend and which 
are used in the least-squares refinement. 

In the case of powder diffractometry, the possibility 
of distributing the total available counting time among 
the various observations so as to minimize the variance 
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of parameters derived from the line profiles has been 
pointed out by Wilson, Thomsen & Yap (1965) and 
Wilson (1967), who give equations for the optimum 
counting times for fixed-time counting and the opti- 
mum counts for fixed-count timing. They also mention 
the virtual necessity of an on-line computer (or equi- 
valent) for continually adjusting times or counts. Our 
approach resembles theirs in the use of the variational 
method, but the applications and results are rather 
different.t 

Since the division of counting time between scan and 
background or among different reflections depends on 
the magnitudes of the intensities themselves, these 
procedures might seem well suited to a structure re- 
determination, where intensities sufficiently accurate for 
this purpose are already known; in this case the com- 
putations can be done off-line. With an on-line com- 
puter and in the absence of such prior information, 
the counts for each reflection may be taken in two 
consecutive 'passes', separated by a rapid on-line com- 
putation, each pass consisting of background counts 
on both sides of the peak and a scan between. During 
the first pass enough counts are obtained in pre-fixed 
times to permit the calculation of the total optimum 
counting times for the background and scan and during 
the second pass counting is done for the remaining 
balances of these optimum times. 

The division of time will depend on approximate 
knowledge of the magnitudes of various kinds of un- 
certainty in the experimental work and in the fit to 
the structure model. We shall limit ourselves here to a 
consideration of random errors, assumed normally dis- 
tributed, although it may become possible to consider 
limits of systematic error in a somewhat similar con- 
text. In our mathematical model, we shall assume that 
there are random errors of three main types: counting 
errors (c) in the intensity measurements, errors of ex- 
perimental origin (e) which affect the net intensity ap- 
proximately in proportion to its magnitude (but may 
be a function of scattering angle also), and 'random' 
errors (f)  in the atomic form factors (remaining after 
compensation by adjustment of temperature factors, 
which of course subjects the latter to 'systematic' errors) 
to an extent that depends primarily on the scattering 
angle and only weakly on the structure factor magni- 
tude if (as we shall assume) we have a roughly equal- 
atom structure with no atoms in special positions. Thus 
the variance in AF may be expressed 

1 
2 2 2 

a2ar = (2 LpF) z (a; + a e ) + a  t . (1) 

In the counting error (c) we include not only the count- 
ing errors proper as estimated from statistics, but also 
the short-term errors in the source intensity or the 
estimate of them that is used in the calculations. When 

• ~ After this paper had been submitted it came to my atten- 
tion that Hamilton (1967) and V. Schomaker (unpublished) 
had independently investigated aspects of the problem here 
treated, apparently with an approach similar to mine. 

a monitor counter is used, as is common in neutron 
diffraction, counting statistics may be used directly for 
these short-term errors. Even when there is no monitor 
we may expect that rapid short-term fluctuations in 
the source intensity (due to electrical 'noise' in the 
X-ray generator regulation circuitry) will have prop- 
erties closely analogous to counting statistics. The ex- 
perimental errors (e) include, perhaps among others, 
contributions from long-term variations in source 
intensity, effect of an inhomogeneous beam as the 
crystal rotates or moves in it, and perhaps residual ab- 
sorption after estimation and correction. These errors 
are partly systematic (not completely independent from 
reflection to reflection) but we shall assume that they 
have in effect a random part that we can discuss here. 
Much the same can be said for the errors in the form 
factors, but we shall assume that these are sufficiently 
well randomized by the signs of the individual terms 
in the summation for the structure factor if we have 
a many-atom structure that is not too strongly dom- 
inated by one or a few atoms. This division of errors 
between random and systematic admittedly may not 
be very satisfactory, but we need it here for a starting 
point and we may hope that it will be further clarified 
later if the need arises. [The problem of estimating va- 
riances in intensities and structure factors has been dis- 
cussed by Abrahams & Reddy (1965)]. 

Secondary extinction and multiple scattering are dif- 
ficult to deal with here because their functional depen- 
dences on intensity and scattering angle are very com- 
plicated, and because errors due to their neglect or 
incomplete correction are not normally distributed 
around a zero mean. It seems best here to assume that 
secondary extinction has been eliminated or accurately 
corrected for by the methods of Zachariasen (1963, 
1967) and multiple scattering has been sufficiently 
minimized by avoidance of crystal orientations that 
give rise to systematic multiple diffraction (Zachariasen, 
1965; Burbank, 1965) and/or estimated and corrected 
for as suggested by Coppens (1968). Coppens's proce- 
dure also is best accomplished with an on-line com- 
puter, and perhaps could be integrated with the proce- 
dures here discussed. 

The following treatment assumes that the least- 
squares procedure minimizes Zjwg(lFol-lFcl) 2, but 
adaptation of it to minimization of Zjw~(IFol z -  IFcl2) z 
should present no difficulties. 

The intensity of the reflection is given by 

I=kog( Cs- ~ ~) 
= k A ~ u ( R s - R B ) ,  (2) 

where k is a constant for the experiment, o9 is the an- 
gular scanning speed (assumed uniform for a given 
reflection), A~/is the angular range of scan, Cs and 
CB are the total scan and background counts respec- 
tively, ts  and tn are the respective effective counting 
times (taken proportional to the monitor counts in 
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neutron work), and Rs and RB are the respective aver- 
age counting rates. In the terms above discussed, the 
variance in I is 

Cs CB M s  C 2 MR CB 2 
a~ =(kAnt)2 -~s + ~ + Mff " ts 2 + M~ " ts 2 

+Se ~ tB] J 

RB l(R2_s R 2] ] 

t t S  tB 0 \ ts tB ] 

(3) 
where Ms and MB are monitor counts during scan and 
background, Q is the measured mean monitor counting 
rate in the case of neutrons (and an empirical constant 
in the case of X-ray measurements without monitor), 
and se= ae/L We have here made use of the fact that 
the variance in the number of counts is equal to the 
number of counts itself. 

Division of counting time 
between scan and background 

The problem of maximization of the precision of the 
difference between two counting rates by appropriately 
dividing the available time between them has been dis- 
cussed in connection with powder diffractometry by 
Parrish (1956) and Mack & Spielberg (1958); these 
authors also give several references to prior solutions 
of the same problem for use in radiochemical counting 
applications. Their solution is equivalent to 

t s= R,n+-Ri n t, te= Rlsn + R~I2 t, (4) 
s B 

where the terms in 1/Q have been neglected. [A similar 
result has been reported independently by Hamilton 
(1967)]. These equations are obtained by minimizing 
a~ [equation (3)] with respect to ts and tB with the 
constraint ts + tB = t. Inclusion of the terms in l/Q gives 

R'ls/2 R'~/2 
t~ = R,~ ~ + R,I~ t, t~ = R,14 ~ + R,~, ~ t, (5) 

where 
Rs=Rs(1 +Rs /o ) ,  R'_B=RB(1 +RB/O). (6) 

Substitution into equation (3) gives 

[ l gl)'ll2-L- la'll2'2-t-~(RS--RB) 2] (7) a~ =(kA~u) 2 -7 t'" s " ' "  B J 

With 

F= (I/Lp) 1/2 = K1/E(Rs- RB) 1/2, aF = aI/(2 LpF) ,  (8) 

where Lp is the Lorentz-polarization factor and K =  
kA~/Lp,  we obtain for the variance in AF=Fo-Fc:  

. , . . s  - . . B  , +s~(Rs_RB) +a~. (9) a2e= Y Rs- -RB 

The terms Rs/o and RB/Q will ordinarily be quite small, 
especially when a monitor is used as in neutron work; 
it is possible however that they could be of significance 

in X-ray work without a monitor. From this point on 
we will neglect them, and drop the primes. We then 
obtain 

K Rlsn+ R~/2 RB)] 
~ F  = - ~ - [ 1  (-R~,2-_ R~,2 ) + s 2 ( R s  - 

. . I  

_ K [ 2K1/2R~'2[1 KRB] 1/2 2KRB] 
[ 1 +  I + + - 4--7 _ If[ --F 5 -1  f 2 l 

+¼s~F2+@. (10) 

Equation (9) or (10) may be used for calculating weights 
for the least-squares refinement if counting times have 
been apportioned between scan and background in 
accordance with equations (6) or (4). 

Two-pass counting 

For specified precision in the intensity I or structure 
factor F or structure factor difference AF, we solve the 
appropriate equation (equation (7) in the case of I; 
(9) or (10) in the case of AF) for the total time t. Pro- 
visional values of Rs and Re, if not known beforehand, 
must be obtained from the first of two passes. The 
times tsl and tm chosen for scan and background 
counting during the first pass should not exceed the 
times appropriate to Rs and RB and should therefore 
be taken as the minimum values possible for any con- 
ceivable values of Rs and Re. 

For specified absolute precision in the intensity, the 
value assigned to ax must be such that 

> (kA~u)2s2(Rs - RB)2ax . (11) 

On solving equations (7) and (5) for ts and te in terms 
of Rs and RB we find that we are in no danger of 
exceeding the optimum value of ts and tn if we take 
provisionally Rs = RB = Rrain (where Rmin is the smallest 
possible value for RB) in calculating tsa and tB1; we 
find ts~ = tBx = ta/2, where tl is the total time for the 
first pass. 

In the case where RB and s 2 (Rs - RB) 2 are negligible 
in comparison with Rs, specification of absolute pre- 
cision in the intensity amounts to specifying a fixed 
count Cs. 

The case of specified absolute precision in the struc- 
ture factor F or structure factor difference A F is more 
complicated. The value assigned to a,~F must be such 
that 

oaar>_a~+¼Ks~(aRs-RB)max, a >  1. (12) 

The values assigned to Rs and RB for calculating the 
values of tsa and tm here depend on the value of a. 
If a >_ (Rmax/Rmin) U2 in calculating tsx and a >_ 3 in cal- 
culating tel (where Rmax is the largest possible value 
of Rs), we should take Rs = R m a x  and Re = R m i n  for 
calculating these times. The contrary cases are more 
complicated, requiring the finding of the minimum 
times by differentiation and solution of the resulting 
quadratic and cubic equations; it is perhaps better to 
try two or three trial values for Rs, keeping Re = R m i n ,  

and employ the smallest times obtained. 
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For specified relative precision 

a2av/FZ> s~/4+a~/K(Rs- RB)min (13) 

we should take Rs = Rmax and RB = Rmin  in calculating 
ts1 and tBX. 

In all cases, from the counts we obtain in the first 
pass we calculate new provisional values of the count- 
ing rates Rs and RB, with which to calculate new times 
t, ts, and tB with equations given. Then we carry out 
the second pass with t s 2 =  t s -  ts1, tB2= tB- -  tB1 and 
combine the counts and times for the two passes. 

However, these procedures do not exhaust the po- 
tentialities of variable counting times. We show now 
how we propose to divide the total instrument counting 
time available for the determination among the various 
reflections j=  1,2, . . . ,m,  so as to best accomplish the 
particular objectives of a structure determination. 

Optimization of parameter precision 

Let there be n refinable parameters ~.  Now it might 
be desired to maximize 

£2_= ~7 Wio3~ (14) 
i=1 

where o9~ is the weight (reciprocal variance) of ~ and 
W~ is an assigned weight representing the relative im- 
portance of precision in ~ in the mind of the investiga- 
tor. For example, W~ could be set equal to unity for all 
position parameters and zero for all thermal param- 
eters. The weight coi= 1/a~ of ~ is given by 

where 

1 
gOi = Bii wl ' 

l lwl~a~= 1 ~ wj(MFj)2 
m - - n j = l  

is the 'variance of an observation of unit weight'. Here 
the AFj are the residuals at the end of refinement and 
wj= 1/a2ae are the weights estimated from the experi- 
ment and used in the refinement. If our assumptions 
have been correct and the magnitudes of the error par- 
ameters Se and aj, have been properly assigned we 
should expect ax, the 'goodness of fit', to be unity; 
i.e. that w~ = 1. (Even if Ws is not actually unity we will 
at least assume that it is constant with respect to varia- 
tion of the wj). Taking w~ = 1 we have 

where 
cos = 1/ Bu (15) 

(B)=(A) -1 (16) 

and (A) is the normal equations matrix. 
We wish to maximize (2 with respect to variation 

of the weights w~, upon which depend the times tj for 
which the reflections must be counted, subject to the 
constraint 27 t~ = T,  (17) 

J 

where T is the total available counting time for all re- 
flections. We may write equations (9) and (10) in the 
form 2j 

tj= 1/wj-K] (18) 

where 1/wl = a,]ej and 
K[ l~'112 _L. Dt 112"~2 [ 2K1/2Rl12 t " s  ~:__B J K 

2j-- 4 ( R s -  RB) ---- 4 ~ 1 + [El 

KRB] 1/2 2KRB 

K~ = 1 s 2 4K, e (Rs -RB)+a~=¼S2eF2+¢7~  (20) 

Equation (19), second part, reduces to 

2=  ~4K=kAv/4 Lp (19a) 

when the background counting rate is negligible. Equa- 
tion (20) represents that part of the variance in AF that 
is due to sources other than counting statistics. 

It is necessary to differentiate £2 with respect to the 
w~. The derivative of the normal equations determinant 
A with respect to wj is 

OA 
= X X as, kM'~t, (21) 

~wj k t 
where 

O(AF)j O(AF)j 
aj, kt= c3{e b~t (22) 

and ~{ez is the cofactor of element Axz in the deter- 
minant A (obtained by deleting the kth row and the 
lth column of A, evaluating the result as a determinant 
and multiplying by (-1)It+t; if A has only a single 
element, its cofactor is + 1). From 

ast =,4ts/A (23) 

we obtain by differentiation 

OBs_t _ 1 
Owj - A 2- 27k Sl aj, ~z(AA-kus- A'ev'/ts), (24) 

where Axtts is the determinant obtained by deleting 
rows k and t and columns l and s of A and multiplying 
by (-1)~+z+t+s; it vanishes if k = t  and/or l=s; for A 
of order 2 it has as a possible non-zero value only + 1 ; 
for A of order 1 it is zero. From this result and equa- 
tions (15) and (23) we obtain 

~o9~ _ 1_ 27 X ai, kz(A~v4u- AA-~uO . (25) 

We can of course be more general, and elect to 
maximize a linear combination 

n t 

£2'= X W~,co~, (26) 
k - - I  

of the weights of linear (or linearizable) functions I1~ 
of the ~ (e.g. interatomic distances)" 

r/k = 27 P ~  + ok. (27) 
i 
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N o w  
cok = 1/Qkk , (28) 

where (Q) is an n ' x  n' matrix, 

(Q)=(t ' ) (B)(P);  Qkk = 27 27 Ps~PtkBst. (29) 
s t 

Corresponding to equation (25) we may write 

0o9'~ 1 
~2"ka= Ow~ - --A2-Q~k X, 27, Ps~P'~ 27k X, a~, et 

(~f~f~s-  A ,~us) .  (30) 
We now write 

~f2 012' 
- z 

k 
(31) 

The variational equation may now be written in either 
the unprimed form or the primed form (we will confine 
ourselves henceforth to the former) 

27 awj ( f2 j -~  2 dt j  ~ ( Q - ~ 2 T ) =  J _ dw i ] = 0 ,  (32) 

where ~2 is a Lagrangian multiplier. For arbitrary and 
independent variations of wj the quantity in the second 
parenthesis must vanish for each term in the sum; from 
equation (18) we obtain 

faj=   (1 - wjx )2 " 

Taking the positive square roots (w~ may not exceed 
1/x~) we obtain 

1 [ l _ c c  ).~/2 ] (33) wj= t a Jq" 

Substituting this into equation (18) we obtain 

0 =  ~ \ ~  - 1 j ,  (34) 

and on summing [equation (17)] we get 

m 
,~, ~112()1121~.2 

j----1 

T+ Z  J14 
j = l  

(35) 

Once the particular combination of parameters to be 
optimized is chosen (i.e. the W~ or W~ are specified), 
we propose that equations (33) and (34) be used to 
calculate the desired weights wj, and the required coun- 
ting times tj which can be further divided between scan 
and background with equations (4) or (5). 

Discussion 
If the structure factor derivatives needed are already 
approximately known (from a previous determination), 
their values can be used in calculating the quantities 

required in equations (25) and (30); otherwise it will 
be necessary to use expectation values of their squares 
and products: 

/ a(_AF)j cq(AF)j \ (22a) 
O i/" 

The expectation value will be roughly equal to an aver- 
age taken over a group of similar parameters (e.g. co- 
ordinates of roughly equal atoms), and its use would 
involve little disadvantage relative to the true values 
when equal weights W~ are assigned to a group of such 
parameters. 

Provisional values for the weights are necessary in 
general; we might for example take w~ = C/F~ where 
C is a constant [this is equivalent to neglecting @ in 
equation (20) and ignoring the bracketed quantity in 
equation (33)]. In principle, once having got weights 
from equations (33) and (35) we can put them into 
the equations for a second approximation, but as a 
practical matter this may not be necessary; in any case 
it would require prior knowledge of approximate inten- 
sities before data collection. 

Some observations are in order concerning equations 
(33)-(35). The second term in the denominator of (35) 
has the dimensions of time; we may indeed write 

m 

TO= X t~, t~=2dx~, (36) 
j = l  

where t~ represents a counting time that would give a 
variance due to counting statistics equal to x~. Thus, 
we see that the 'point of diminishing returns' is reached 
when T is of the order of T°; increases in total count- 
ing time beyond T O produce smaller and smaller in- 
creases in w3". We also see that when I2j is large (i.e. 
the structure factor is sensitive to the parameters 
chosen), w~ is almost equal to 1/x~, not surprisingly. 
When f2j is small (structure factor insensitive to the 
chosen parameters) the value of w~ may be small or 
zero. An apparent negative value means that the re- 
flection should be left out altogether; any time spent 
on it is wasted because that time has to be taken from 
reflections that are more sensitive to the parameters. 
Reflections with w~ < 0 will be said to have zero weight. 
After eliminating such reflections we may 'renormalize' 
by omitting the corresponding terms from the summa- 
tions in equation (35). The renormalization may result 
in a few more reflections needing to be dropped, but 
ordinarily the process should be expected to converge 
rapidly, and again as a practical matter the renormal- 
ization may not be necessary. 

To illustrate further the behavior of these equations, 
let us imagine a hypothetical (but unlikely) situation 
where 2j = 2, ~ = tc 2, 2 and x 2 being constants for all 
reflections. Equations (33) and (35) then combine to 
give 1 [ T O (f21/2) ] 

wj= ~ -  1 -  T+~F ° ~i/2- , (37) 

where (I21/2) is the average of f2J/2 over all reflections. 
If for example we take the 'point of diminishing re- 
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turns' at T =  T 0, then we should in principle omit all 
reflections for which f2]/2< (g21/2)/2. 

If we suppose that the tc~ are very small, TO/(T+ T °) 
approaches unity and only those reflections for which 
g2~/2> (O1/2) will have non-zero weights. Renormal- 
ization will throw out about half of the reflections, the 
next renormalization will throw out about half of those 
left, and so on until self-consistency is reached where 
the number of those remaining is small enough to 
enable the times given to them to be as large as 2tic 2 
in order of magnitude. In the limit of vanishingly small 
tc~ this would ultimately lead to only one reflection re- 
maining, to which all of the counting time must be 
assigned; however, some of the approximations in the 
treatment are invalid when m is not large in compari- 
son with n. (A treatment of this case without any ap- 
proximations should give the result that the number 
m of reflections to be counted should be reduced to 
equality with the number n of refinable parameters. 
The selection of the n most appropriate reflections and 
the division of counting time among them presents a 
very different problem which we have not treated, as 
it would appear to have little or no practical importance 
in the present context.) We may conclude that the 
existence of random errors not due to counting but 
of roughly the same order of magnitude as the count- 
ing errors is essential to the validity of the treatment 
as carried out here. Indeed, an attempt to maximize 
g2 in the case where the tc~ vanish will result in the find- 
ing that no stationary maximum with respect to weights 
wj or counting time tj exists. 

The equations obtained by Wilson et al. (1965) do 
not show the behavior here described. A major dif- 
ference is that in their treatment the function for which 
the variance is minimized is not an explicit function 
of the weights, as it is here owing to the use of weights 
in the least-squares refinement of an overdetermined 
problem. 

The computation of the 2j and x~ requires approxi- 
mate knowledge of the magnitude of the intensity or 
structure factor and of the background counting rate 
for each reflection, so a two-pass procedure is again 
necessary (unless data from a previous determination 
can be used). For preliminary estimate of the weight 
so that tB1 and tsa can be specified one might set F 2 
in equation (20) to some large value, perhaps F2a~, 
and set the bracketed quantity in equation (33) to some 
fraction, say 0.10, if it is not possible or desirable to 
calculate it. This, of course, will result in collection of 
data for some reflections for which wj will turn out 
to be zero, but the amount of counting time assigned 
to these reflections will be inconsiderable, and more- 
over some data for all reflections may be needed for 
the determination of the trial structure anyway. 

The machine computation of the f2j or f2j can in 
many cases precede the data collection, and should not 
be as formidable as it looks because with expectation 
values for the aj,~k many elements A~e will be zero. 
In view of other approximations involved it may be 

justifiable to assume that (A) is diagonal or at least 
block diagonal. Positional parameters in an orthogonal 
lattice generally have small matrix elements with each 
other and with other parameters, and in the absence 
of previous structure information the expectation val- 
ues of such elements are zero; in this case equation (25) 
reduces to [ 8(AF)j ]2 

I2~,j=aj, t~= [ -  ~-~--j , (38) 

the expectation value of which can easily be estimated. 
For the x parameter of atom v it is for reflection j 

(aj.v~,vx) = 87rzf~. h~ (39) 

in space group PT. Since for positional parameters 
these values are quadratic in the Miller indices it may 
be expected that a substantial body of reflections at 
low and medium mattering angles may turn out to havey 
zero values of wj. 

When (i) the background counting rate is assumed 
negligible, (ii) ae 2 in equation (1) is assumed propor- 
tional to the square of the intensity (i.e. Se--2--constant), 

2 is assumed small in com- (iii) a~ is neglected, (iv) a~ 
parison with a 2, (v) the normal equation matrix is as- 
sumed diagonal, and (vi) optimization is limited to a 
single parameter ~,  then equation (34) reduces to an 
equation presented by Hamilton (1967), derived inde- 
pendently in what appears to be an essentially similar 
way. In our notation his equation is 

tj oc(Lp)_a/2 [ OlFjl z 1 
0 ~  J" IFjI 3" 

(In Hamilton's abstract the Lp factor has instead the 
exponent + ½, because he defines Lp as F2/I.) 

The use of equation (38) is not in general permissible 
with thermal parameters because of their strong cor- 
relation with the scale factor. To illustrate, let us con- 
sider the normal equations matrix to be block diagonal, 
one block of which (A) is a 2 × 2 matrix for the overall 
isotropic temperature factor B and the scale factor k. 
Equation (25) reduces, for the temperature factor, to 

8coB 1 
= {[Annalck-(aBnakk--a~,n)  11 Ak2- 

aj, kk-- 2AnkAxkaj, ~8 + A~,t, aj, BB}. (40) 

Now if we write the Debye-Waller factor as 
exp ( - B H ~ / 4 ) ,  where H i = ( 2  sin 0j)/2, then c~Fj/OB= 
OAF~/OB= - H~Fj/4, OAFj/Ok = Fs, and 

a~, BB = F~H4/16, as, B~ = aj, ~B 
2 2 = - F j H j / 4 ,  aj, k e=F~ .  (41) 

Summing over (say) a hemisphere in the reciprocal lat- 
tice to obtain matrix elements we get for example 

ABB= X wfl,,BB~-- Ve . ~-~ 2~Z IXomaXwF2H6dH , 
J 

where Ve is the unit-cell volume. For simplicity we 
assume here that provisionally w = C/F 2, where C is a 
constant, as suggested earlier. Then 
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3 
AsB= ~ " / H 4 ~ , ,  ABk=A~B 

3 2 
= -  20 }'Hmax' Alck=7' (42) 

where 
7= C . Ve 2-~ff H ~ax= C . N , (43) 

where N is the number of reciprocal lattice points sum- 
med over. Substitution into equation (40) gives 

H4=40-0 [3 ( HJ ' 2] 2 . ~~B,j = F~ - 5  Hmax) (44) 

The squared quantity in brackets decreases from a 
maximum value of 9 at Hj = 0 to a minimum value of 
zero at Hj/Hmax=(3/5)l/2=0"755 and increases to a 
value of 4 at Hj/Hmax= 1. Thus, the data at small 
angles are as important as those at high angles in 
establishing the value of B, while those at intermediate 
angles are of little or no use. Neglect of the off-diagonal 
elements AZcB=ABk results in the loss of the first term 
in the brackets and leads to the unreasonable result 
(but nevertheless a result that is suggested by the fact 
that the structure factor derivative is quadratic in Hi) 
that only the very high angle reflections are important 
in determining the temperature factor. Indeed, Cruick- 
shank (1960) has presented an equation which would 
appear to indicate that data at large angles would be 
particularly valuable in determining vibration param- 
eters, but he points out that that equation neglects the 
very serious correlation between the scale factor and 
the vibration parameters. 

The equation corresponding to equation (44) in the 
case of the scale factor is 

1 [5_ H '  212 
f2k,j = ~-- F~ 7 (Hmax) • (45) 

The squared quantity in brackets here goes from a 
maximum of 25 at H~=0 to a minimum of zero at 
Hj/Hmax=(5/7)1/z=0"845 and increases to 4 at 
Hj/Hmax = 1. The data at low angles are relatively more 
important in determining the scale factor (though some 
data at high angles are needed because of the connec- 
tion with the temperature factor). Neglect of off- 
diagonal elements here results in the loss of the second 
term in the brackets and leads to the unreasonable 
result that, at a give F z level, data at all angles are 
equally important in determining the scale factor. 

It is perhaps not likely that the primary objective 
of a structure determination or redetermination would 
be the accurate evaluation of thermal parameters. 
Even if it were, these parameters are the ones most 
subject to systematic errors such as uncorrected ab- 
sorption. Accordingly, the utility of equation (44), like 

that of (45), may be limited to expressing more pre- 
cisely what is already known intuitively from the prop- 
erties of a Wilson plot. 

In most cases the primary objectives of a structure 
determination are to obtain an atomic arrangement 
that is correct and positional parameters and inter- 
atomic distances and angles that are as precise as pos- 
sible. If the burden of work on a diffractometer is such 
that counting time available for a given determination 
must be limited, consideration should be given to 
limiting the counting of low- and medium-angle re- 
flections to the bare minimum needed to determine the 
trial structure and to concentrating the bulk of the 
time on high-angle reflections. However, Cruickshank 
(1956, 1960) has pointed out that with room-tempera- 
ture data the proper calculation of bond lengths from 
positional parameters involves consideration of ther- 
mal vibration effects and knowledge of the values of 
thermal parameters. Therefore, if data collection is to 
be concentrated at high angles, serious consideration 
should be given to his recommendation (Cruickshank, 
1960) that the crystal be maintained at a low tem- 
perature (< 100°K). 
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for the hospitality of their laboratory in Grenoble, and 
for valuable discussions. I wish to thank Dr Bassi also 
for interesting me in this problem and for pointing out 
to me the possibility of variable counting times on an 
on-line system, with two passes for each reflection. I 
owe thanks for valuable discussions (following the 
original submission of this paper) also to Dr Walter 
Hamilton and Professor Verner Schomaker, both of 
whom have independently investigated aspects of this 
problem. 
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